GW continues to break records, in the silence of media.

GW continues to break records, in the silence of media.

No news, no bad news, says a proverb. Since last October, 2015, the news is always the same: monthly global temperature anomaly has updated previous record of heat. At least, considering GISS database, that start from 1880. Ten consecutive months, including also the month of June 2016, in which the anomaly was equal to that of June 2015 (and higher than others). Never occurred before. With August well positioned for beating its warm record, the only hope fror avoiding a complete year of records is kept in the month of September. This when ENSO index has turned versus its negative phase, as this global SST animation shows. And this is not a good news.

Below, the update of the plots shown some months ago using linear and spiral visualization, and including the data until July. It is evident in both figures as the red line from October 2015 constitutes the upper border of the temperature ensemble.

linear_data_animation

Anomaly of monthly global mean temperatures, according with GISS database. Linear visualization.

Both visualizations show the beginning of the actual warming phase, in late 1980’s, and the violent acceleration in last nine months, much larger than those observed in previous large El Niño (positive phase of ENSO) episodes.

spiral_data_animation

Anomaly of monthly global mean temperatures, according with GISS database. Spiral viualization.

Despite these alarming data, the news about the continuous records of global temperatures does not attract public opinion too much. A research of “global warming” keywords on google trends gives a signal slowly decreasing since the peak of 2007, perhaps due to the book and movie of Al Gore “An inconvenient truth”.

trends-gw

“Global warming” key according with google trends.

Of course, soccer and olympic games, or actresses gossips, or Pokemons, are much more attractive news for common people. After all, global temperatures involve just the earth…

La temperatura malata del nostro pianeta

La temperatura malata del nostro pianeta

Il cambiamento climatico è una tematica che non cattura ancora l’opinione pubblica come dovrebbe. Una ragione è che le fluttuazioni termiche annue, a scala globale, sono molto più piccole delle variazioni diurne a piccoal scala, o di quelle stagionali a scala locale o globale. Tuttavia, si può notare un certo parallelismo tra la temperatura corporea di una persona e il clima. Se uno monitorasse la propria temperatura corporea in ogni minuto del giorno, noterebbe alcune variazioni diurne di poco meno di 1 °C. Inoltre, persone diverse possono avere temperature corporee diverse, anche in questo caso con variazioni di 1 °C o più, anche in funzione delle proprie condizioni personali. Un atleta, immediatamente dopo una gara, o una persona normale dopo un esercizio stressante, possono avere una temperatura corporea superiore anche di 1 °C rispetto alla norma. Bene, queste variazioni normali rappresentano il “tempo meteorologico” di una persona, e non indicano necessariamente la presenza di qualche malattia.

Tuttavia, se la temperatura di qualcuno inizia ad aumentare, più o meno regolarmente, nel tempo, questa variazione rappresenta una sorta di “clima” di una persona, che sta cambiando, e può essere il sintomo di qualcosa non necessariamente positivo per la salute della persona. Questo è vero anche se queste variazioni “climatiche” sono inferiori a quelle che in precedenza abbiamo chiamato variazioni del “tempo meteorologico”. Il problema scientifico è quindi distinguere le variazioni normali da quelle anormali, differenziandone le scale. Mentre il problema comunicativo è come informare l’opinione pubblica, in modo corretto ma comprensibile, riguardo a queste dinamiche.

Abbiamo la fortuna di avere a disposizione oltre un secolo di osservazioni meteorologiche, eseguite in diverse stazioni dislocate in varie località della Terra. Molti centi climatici hanno raccolto dei sottoinsiemi di questi dati e li hanno analizati, in maniera da eliminare i trend o i dati anomali. E hanno calcolato una stima della temperatura media globale. Poiché la scelta delle stazioni ed il trattamento dei dati è stato differente da centro a centro, ci sono alcune differenze tra i vari dataset, anche se il segnale che emerge è abbastanza univoco e incontestabile: la temperatura media globale sta aumentando.

Inoltre, diversi modelli climatici (ora si chiamano più propriamente Earth System Models, cioè modelli del sistema terrestre) sono stati fatti girare da vari gruppi di ricerca per simulare il clima terrestre futuro. Anche se ogni modello tende a fornire una risposta particolare, oggi si preferisce guardare a questo tipo di proiezioni considerando l’insieme de irisultati di un ampio gruppo di modelli. Questo è stato fatto, ad esempio, nel corso dell’esperimento CMIP5, i cui risultati preliminari hanno costituito il nucleo delle affermazioni riportate sull’ultimo rapporto IPCC.

Con Stefano Caserini, coordinatore di climalteranti.it, abbiamo avuto l’idea di combinare le due informazioni, dati e proiezioni modellistiche, in modo visuale. Abbiamo scelto come dataset quello del GISS, e come dati modellistici gli insiemi dell’esperimento CMIP5, selezionando tre diversi scenari: RCP 2.6, RCP 4.5 e il più estremo RCP 8.5, corrispondenti rispettivamente ad emissioni basse, medie e alte. In particolare, lo scenario RCP 8.5 corrisponde a quello che ci si aspetteremmo che succedesse nel caso in cui le emissioni proseguissero a variare come hanno fatto finora (cioè con un continuo incremento):

Monthly climate change - GISS + RCP 8.5

Evolution of monthly mean temperature anomalies from 1880 to 2100, referred to the period 1880-1909. the observations relative to the period January 1880 – April 2016 are extraxted from dataset GISS, while the simulation data, relative to the period 2017-2100, have been gathered from the ensemble values of experiment CMIP5, in this case selecting the extreme high-emissions scenario RCP 8.5.

Qui vediamo invece la situazione che ci aspettiamo secondo lo scenario “migliore”: RCP 2.6:

Monthly climate change - GISS + RCP 2.6

Evolution of monthly mean temperature anomalies from 1880 to 2100, referred to the period 1880-1909. the observations relative to the period January 1880 – April 2016 are extraxted from dataset GISS, while the simulation data, relative to the period 2017-2100, have been gathered from the ensemble values of experiment CMIP5, in this case selecting the low-emissions scenario RCP 2.6.

mentre qui è presentato qullo intermedio RCP 4.5:

Monthly climate change - GISS + RCP 4.5

Evolution of monthly mean temperature anomalies from 1880 to 2100, referred to the period 1880-1909. the observations relative to the period January 1880 – April 2016 are extraxted from dataset GISS, while the simulation data, relative to the period 2017-2100, have been gathered from the ensemble values of experiment CMIP5, in this case selecting one of the intermediate scenarios, i.e. the medium-emissions RCP 4.5 .

Le simulazioni modellistiche sono disponibili nel periodo 1860-2100, mentre le osservazioni GISS si riferiscono al periodo 1880-2016 (l’ultimo dato è quello di aprile). Ho integrato i due dataset calcolando per ognuno la rispettiva anomalia (differenza rispetto alla media) nel periodo comune 1880-1909 (un trentennio, come di solito si fa nelle analisi climatiche).

La visualizzazione del risultato l’ho fatta in due modi diversi. Ho usato il metodo a spirale delle anomalie mensili, sviluppato orinariamente da Ed Hawkins per i dati HadCRUT, ed ho anche mostrato un grafico lineare delle anomalie mensili, come avevo fatto in un post recente per visualizzare i dati HadCRUT. Il primo dei due metodi è visualizzato in dettaglio in questo post su climalteranti.it, per cui qui di seguito descriverò il secondo e farò alcune brevi considerazioni generali (brevi perché ritengo che i grafici parlino da soli).

Si tratta di due metodi diversi ma efficaci per visualizzare il cambiamento climatico in corso e quello che ci attende. Le animazioni iniziano dal 1880 e, mese per mese, mostrano le variazioni di temperatura fino ad aprile 2016. Si vede bene il raffreddamento nel primo decennio del 1900, il riscaldamento tra il 1920 e il 1930, la stazionarietà nel decennio della seconda guerra mondiale, il successivo piccolo riscaldamento, la nuova stasi tra il 1960 ed il 1970, e poi il rapido incremento del rateo di riscaldamento a partire dal 1980, con gli ultimi quindici anni in grado di aggiornare almeno un record mensile praticamente ogni anno. Fino ad arrivare al periodo anomalo degli

ultimi nove mesi, che si colloca totalmente al di fuori dal range dei valori precedenti.

Le simulazioni climatiche future degli scenari CMIP5 mostrano un continuo riscaldamento, praticamente analogo per i tre scenari fino al 2030, dopodiche gli scenari si differenziano nettamente tra loro. Notiamo anche che il rateo di riscaldamento fornito dai modelli è più regolare, grazie al fatto che questi dati sono rappresentativi di un insieme e non il risultato di un modello singolo. I valori anomali registrati nel quadrimentre gennaio-aprile 2016 sembrano rientrare nelle medie intorno al 2025-2030, quando saranno rappresentativi del “clima normale” di quegli anni.

Dopo il 2030, come si diceva, gli scenari si differenziano rapidamente, con l’unico risultato comune di un riscaldamento più sensibile d’inverno. A fine secolo, anche secondo lo scenario di basse emissioni (RCP 2.6), una stagione come l’ultima trascorsa apparirà come un periodo freddo. Ma, se si guarda lo scenario più estremo (RCP 8.5, che corrisponde alle emissioni alte), apparirà quasi come una sorta di mini-era glaciale…

Gli scenari iniziano a differenziarsi intorno al 2030… c’è ancora un briciolo di tempo per cercare di far verificare lo scenario sopportabile RCP 2.6 invece di quello estremo RCP 8.5… non tanto tempo, perchè i gas serra aumentano inesorabilmente, e il conseguente riscaldamento globale anche.

Possiamo scegliere… dobbiamo scegliere!

Sulle calorie, sull’energia e sul risparmio energetico

Sulle calorie, sull’energia e sul risparmio energetico

Oggi il mio post cambia un po’ discorso rispetto alla tematica del blog. Infatti parlerò di calorie. Traggo ispirazione dal fatto che, nell’università coreana in cui mi trovo in questo momento (la Ewha Womans University – rimando chi volesse approfondire il motivo della presenza di scuole femminili in Corea a questo mio articolo di qualche tempo fa), hanno tentato di invogliare la gente a far le scale (invece dell’ascensore – ma l’iniziativa non pare riscuotere molto successo…) appiccicando sugli scalini l’indicazione delle calorie consumate ogni due gradini, nonché dei secondi di vita risparmiati. Apparentemente si perdono 0,3 calorie ogni due gradini saliti, o meglio 0,3 Cal, che in realtà sono le grandi calorie, quelle usate in scienza della nutrizione, che comunemente si chiamano calorie. Il numero torna con quanto viene indicato su alcuni siti popolari in cui si parla di calorie e nutrizione, come ad esempio questo sito, dove si dice che salire le scale richiede circa 8÷11 calorie al minuto. Beh, nell’ipotesi, non così campata per aria, di salire un gradino al secondo, questo significa un consumo calorico di 0,13÷0,18 calorie al gradino, numero che è in linea con l’indicazione sui gradini dell’università Ewha. Ma è un numero che, in realtà, non ci dice molto, di per sé. Sembra soltanto molto piccolo, e forse è per questo motivo che “non tira”. Ma è davvero piccolo?

2016-03-07 10.03.40

Fig. 1 – dettaglio di una rampa di scale dell’istituto che ospita il Dipartimento di Atmospheric Sciences and Engineering presso la Ewha Womans University, Seoul, Corea.

Proviamo a fare alcuni “conti della serva”. L’altezza media di un gradino varia tra 10 e 15 cm. Se una persona di 70 kg sale verticalmente di un metro, deve spendere energia per vincere la forza di gravità. Tale energia equivale all’energia potenziale gravitazionale, ed è data da E=mgh dove m è la massa della persona (70 kg, abbiamo detto), g l’accelerazione di gravità (9,81 m s-2) e h lo spostamento in verticale (diciamo 10 cm, ovvero 0,1 m). Si ottiene E=68,67 J. E siccome 1 J = 0,239 cal = 2,39 10-4 Cal, questo significa circa 0,016 Cal a gradino. Cioé circa un decimo rispetto al valore indicato… ma questa è solo l’energia spesa per salire… l’energia spesa da un essere umano non si limita alla sola energia contro la forza di gravità. Il dispendio energetico complessivo, stando in piedi inattivi, è quantificato in 1,0 Cal/min (ovvero 0,016 Cal/s) mentre, se si cammina, tale dispendio è circa tre volte maggiore (2,5÷3,5 Cal/min camminando in piano a 4 km/h, pari a circa 0,042÷0,058 Cal/s). Pertanto, se si considera che una persona salga un gradino al secondo, ecco che al lavoro fisico fatto contro la gravità vanno già sommati il consumo di una persona inattiva e il consumo nel camminare in piano (camminare in salita equivale a camminare in piano più lo spostamento verticale), ovvero si arriva in media a circa 0,08 Cal al gradino, che è circa metà del valore indicato. Poi, naturalmente, ci sono altri aspetti da considerare, ma intanto vediamo che l’ordine di grandezza del dato pare sensato.

bressanini_scienze

Fig. 2 – Articolo “Il destino del grasso” pubblicato nella sezione “Pentole e provette” del numero di Marzo 2016 de Le Scienze.

Vediamo di approfondire ancor più il discorso: in questo, prendo ispirazione anche dal magistrale articolo di Dario Bressanini uscito sul penultimo numero de Le Scienze, e dai consumi riportati su quest’altro sito, che è molto ricco di spunti. Qui il consumo energetico richiesto per salire le scale è quantificato in 12,8 cal/min, a cui viene aggiunto il dato di 6 cal/min per la discesa dalle scale. Tali dati sono riferiti ad una persona di 70 kg, e – sempre nell’ipotesi di salire o scendere un gradino al secondo, possono rispettivamente tradursi in 0,21 e 0,10 Cal per scalino salito/sceso. Essi risultano un po’ maggiori rispetto ai dati appiccicati agli scalini dell’università Ewha, ma occorre notare che essi sono riferiti ad una persona con normopeso di 70 kg, mentre presumibilmente le studentesse dell’università della Ewha sono più vicine ai 50 kg: in tal caso le cifre cambiano rispettivamente in 9,2 Cal/min per salire le scale e 4,3 Cal/min per scenderle, pari rispettivamente a 0,15 e 0,07 Cal per scalino, e il primo dei due valori è esattamente il valore riportato sugli scalini.

Sono valori piccoli? Effettivamente lo sembrano… ma in realtà non è così! Infatti, lo stesso sito permette il paragone con molte altre attività fisiche, e si può scoprire che, grossolanamente, il rateo di consumo energetico nel salire le scale è in realtà ragguardevole e del tutto paragonabile a quello relativo ad una partita di calcio o di rugby, nell’unità di tempo: salire le scale è infatti un’attività energeticamente molto dispendiosa, solo che, ovviamente, non è pensabile di farlo per la durata di un’intera partita di calcio: 90 minuti…

In ogni caso, i numeri di cui sopra possono permettere una rapida conversione dell’energia in gradini di scale da fare, o volendo in piani, se si ipotizza che un piano sia composto da trenta gradini da 10 cm. E, quindi, può essere interessante paragonare tali valori a quelli delle riserve energetiche immagazzinate nel nostro corpo, o a quelli degli alimenti che mangiamo. Perché esprimere le calorie in gradini da salire ci può aiutare a quantificare.

Il cibo italiano è notoriamente ricco di carboidrati. Ebbene, 1 g di carboidrati equivale a 3,8 Cal. Quindi, la razione di 60 g di pasta (senza sugo) da sola contiene un minimo di 228 Cal, ed equivale a 1550 gradini da salire (per un individuo di 50 kg), o 51 piani. In realtà, poiché poi bisogna pure scendere, si può usare il dato di 0,15+0,07=0,22 Cal/gradino, comprensivo di salita e discesa, e l’equivalenza sarebbe con soli 1036 gradini, ovvero 34 piani. Naturalmente un individuo di 70 kg consuma di più e pertanto potrebbe permettersi di salire e scendere soltanto per 735 gradini, equivalenti a 25 piani.

Questo giochino si può ripetere abbastanza facilmente per diversi alimenti, e si ottiene la tabella in allegato, nella quale ho riportato alcuni alimenti di uso comune prendendo i dati relativi all’apporto calorico da questo sito. Vorrei soltanto sottolineare che non sto demonizzando il cibo di per sé: ogni persona necessita di un apporto calorico adeguato durante la giornata, che in genere viene quantificato tra le 2000 e le 2500 Cal, a seconda del sesso e dell’attività fisica, e quando tali valori non vengono raggiunti in modo sistematico e prolungato si va incontro alla denutrizione. Il mio scopo è far capire il valore calorico degli alimenti. E far capire che, se le calorie ingurgitate eccedono sistematicamente le soglie (“che sarà mai qualche caloria in più…“), il nostro corpo le accumula producendo lipidi cioé grassi, al rateo di 9 Cal per 1 g. Se uno accumula 1 kg, ad esempio, poi per smaltirlo, dovrà consumare 9000 Cal. Ovvero salire 60000 scalini, ovvero 2000 piani.

La tabella seguente riporta le equivalenze tra calorie, gradini e piani, nell’ipotesi di salire un gradino al secondo e che un piano contenga 30 gradini, per un uomo medio di 70 kg e una donna media di 50 kg, che definirei quindi in gran forma. Ho inserito alcuni alimenti di uso comune, e altri che rappresentano degli sfizi…

tabella

Tabella 1 – Contenuto calorico di porzioni standard di cibo, rapportate al numero di gradini da salire e scendere da parte di un individuo medio di 50 e 70 kg, e/o di piani.

mm_Big Tasty Bacon

Fig. 3 – Per smaltire le calorie di un panino come questo, occorre salire e scendere scale per l’equivalente di un centinaio di piani!

Che dire? Diciamo che alcuni sfizi “costano” molto, in termini di calorie. Non vuol dire che non ce li si può permettere, ma occorre esserne consapevoli in modo da poterli compensare riducendo le calorie nel resto della giornata o nel giorno successivo.

Ora, uno si potrebbe chiedere cosa c’entri tutto questo discorso sulle calorie e sui contenuti energetici del cibo con il clima. Il motivo è presto detto.

gelato

Fig. 4 – Immagine di un succulento e accattivante gelato sormontato da abbondante panna montata.

Da un lato, il nostro corpo richiede un determinato contenuto calorico giornaliero; ingurgitare più calorie del dovuto può magari appagare i sensi (a chi i sensi non andrebbero in subbuglio guardando – ad esempio – un bel gelato sormontato dalla panna montata, come quello in figura 4?), ma ha come risultato che, se l’operazione è ripetuta spesso, si ingrassa e conseguentemente si danneggia la propria salute; inoltre si richiede un maggiore (e inutile) quantitativo di cibo dall’ambiente, per produrre il quale serve un maggiore apporto energetico che, attualmente, in gran parte richiede l’uso dei combustibili fossili, e quindi produce gas serra. Infine, la tendenza all’obesità è poi collegata all’insorgenza di diverse malattie, che generalmente si manifestano più avanti negli anni, ma con un’età media della popolazione che ormai ha superato gli 80 anni diventa poi inevitabile doversi scontrare, prima o poi, con qualche patologia che rischia di diventare invalidante. Nel 1988 negli USA uscì il musical Hairspray, noto in Italia come “Grasso è bello“, poi trasformato in film ed interpretato, tra gli altri, da John Travolta e Michelle Pfeiffer. Beh, il film è certo divertente, ma il messaggio è fuorviante e sbagliato. Grasso potrà anche essere bello, de gustibus, ma sicuramente non fa bene né a se stessi, né all’ambiente. Limitare la nutrizione al quantitativo corretto è dunque una maniera salutare e magari indiretta ma molto utile anche per limitare le emissioni di gas serra, e quindi anche il cambiamento climatico in corso. Questo discorso vale in generale, e vale anche analizzando in particolare il costo energetico di produzione del cibo: non voglio qui parlare nel dettaglio di questo argomento, ma è noto, ad esempio, che la carne bovina ha un altissimo costo produttivo in termini di emissioni, ed un suo consumo eccessivo danneggia la salute in vari modi.

Hairspray

Fig. 5 – La locandina del film Hairspray.

Dall’altro lato, svolgere quitidianamente attività fisica aiuta la salute del nostro corpo e, di nuovo, contribuisce a limitare il dispendio energetico. Ad esempio, si pensi, in un palazzo di pochi piani, all’ipotesi di salire e scendere i piani a piedi usando le scale rispetto ad utilizzare l’ascensore. Da un lato ci sono i benefici sulla salute: l’attività fisica quotidiana richiesta per il nostro benessere, la diminuzione del rischio di mortalità durante la salita, il consumo energetico, la maggiore forma fisica e capacità aerobica, la perdita di peso, il potenziamento muscolare, il miglioramento della quantità di colesterolo “buono” presente nel sangue, solo per citare i più comuni. Dall’altro, uno può farsi un’idea del consumo energetico di un ascensore leggendosi questo interessante e corposo documento, in cui sono prese in considerazione diverse tipologie di ascensori, e dove si può notare come una buona parte del consumo sarebbe abbattibile con l’installazione di ascensori di nuova concezione.

Riassumendo: fare attenzione a ciò che si mangia ed all’apporto calorico del cibo, e fare attività fisica ci fa rimanere in salute e ci permette anche di limitare (un po’) le emissioni di gas serra che alterano il nostro clima. Perché dunque non farlo?

Il mese di luglio visto dalla stazione di fisica

Il mese di luglio visto dalla stazione di fisica

Le statistiche definitive sul mese di luglio appena trascorso lo archiviano come il mese mediamente più caldo nella serie di osservazioni condotte presso la nostra stazione meteorologica, dislocata sul tetto dell’istituto di fisica.

La stazione meteorologica del Dipartimento di Fisica dell’università di Torino acquisisce dati in modo abbastanza continuativo dal 1992. Abbastanza perché, malgrado negli anni si sia fatto il possibile per garantire un dataset il più continuo possibile di dati, ogni tanto guasti e vicende di vario tipo hanno prodotto alcune lacune temporali. Per avere un database continuo, sono state fatte delle interpolazioni usando alcune serie di dati acquisiti nella città di Torino: in particolare, sono state usate le serie dei dati giornalieri delle stazioni Buon Pastore, Alenia, Giardini Reali, Reiss Romoli, Vallere e Consolata di ARPA Piemonte, e la serie omogeneizzata della Società Meteorologica Italiana. Le interpolazioni dei dati mancanti sono state eseguite calcolando, sui dati disponibili, le rette di regressione (separatamente per temperature massime, medie e minime) rispetto ad ogni stazione, e mediando i vari dati così ottenuti per regressione da ogni stazione. Per la serie omogeneizzata della Società Meteorologica Italiana, che non dispone del dato di temperatura media, questa è stata ricavata come semisomma della minima e della massima.

Al fine di ottenere un database statistico di riferimento con cui raffrontarsi (normalmente il periodo di media usato a tale scopo è il trentennio 1961-90), sono state effettuate a ritroso le ricostruzioni dei dati fino al 1961, quindi essi sono stati mediati nel trentennio.

Media delle temperature minime, medie e massime nel periodo giugno-luglio di ogni anno dall’inizio delle osservazioni. Dati Dip. di Fisica - Unito.

Media delle temperature minime, medie e massime nel periodo giugno-luglio di ogni anno dall’inizio delle osservazioni. Dati Dip. di Fisica – Unito.

Il primo grafico che commentiamo è la media delle temperature nel periodo giugno-luglio di ogni anno dall’inizio delle osservazioni: si vede come il 2015 risulti secondo soltanto rispetto al 2003, che detiene ancora il primato, ma di poco. La differenza maggiore la si riscontra nelle massime (quasi 1 °C), mentre le minime differiscono di circa 0,5 °C.

Se ci limitiamo ai valori medi di luglio, tuttavia, notiamo come il 2015 balzi nettamente in testa, surclassando non solo il luglio 2003 (che non fu straordinario: luglio fu il meno anomalo dei tre mesi estivi) ma anche agosto 2003, mese considerato a lungo imbattibile, anche alcuni giorni fa, quando molti ritenevano difficile poter avere svariate ondate di calore di intensità tale da poter attaccare quel record. Dando un’occhiata ai valori ricostruiti a ritroso fino al 1961, nessun mese ha mai fatto osservare valori termici simili, per cui possiamo concludere che luglio 2015 è stato il mese più caldo almeno dal 1961 ad oggi in area urbana.

Prima di proseguire, due parole sulla significatività dei dati. Chi segue le vicende meteorologiche cittadine ha sicuramente notato come i valori minimi registrati dalla nostra stazione siano particolarmente alti, soprattutto in questi mesi estivi e di notte, e soprattutto se confrontati con le stazioni suburbane e con quelle dislocate su prato. Questo fatto tuttavia non deve sorprendere più di tanto. Le stazioni “a norma” secondo l’organizzazione meteorologica mondiale (WMO) dovrebbero essere posizionate su erba, cosa che in area urbana è difficile da realizzare. D’altra parte, una stazione dislocata su cemento è più rappresentativa delle temperature che si registrano in area urbana. La posizione sul tetto dell’edificio rende il termometro meno legato all’eventuale colorazione scura dell’asfalto e più esposto alle eventuali brezze. D’altra parte, in situazioni di ondate di calore come quelle registratesi nel luglio appena trascorso, suolo e muri si scaldano durante la giornata, trasmettendo il calore anche al’interno, e rimangono caldi anche di notte, emettendo radiazione ad onda lunga che può essere intercettata da altri muri o dagli oggetti come i termometri. Diversa è la situazione di un prato inerbito, se l’erba rimane viva, in quanto la pianta traspira tutto quello che può al fine di abbassare la temperatura delle proprie foglie, e mantiene pertanto il suolo più fresco.

Anomalie delle temperature minime, medie e massime registrate a luglio. Dati Dip. di Fisica - Unito.

Anomalie delle temperature minime, medie e massime registrate a luglio. Dati Dip. di Fisica – Unito.

Passiamo ora a vedere le anomalie delle temperature registrate a luglio: tali anomalie, calcolate rispetto al trentennio 1961-90, risultano tra 5,4 e 6,3 °C, a seconda della temperatura, e sono le maggiori in assoluto per il mese di luglio, superando di oltre 2 °C il valore più alto precedente. Se per le massime tale anomalia non batte (per pochissimo) il valore di quella dell’agosto 2003, di 6,4 °C, per le medie e le minime risulta invece la maggiore in assoluto. Con una deviazione standard delle temperature sul trentennio 1961-90 compresa tra 1,8 e 2,0 °C, tali anomalie risultano pari ad un numero di deviazioni standard compreso tra 4,9 e 5,5. La statistica ci dice che, in una distribuzione nornale, un evento che si allontani dalla media di cinque deviazioni standard ha una probabilità di verificarsi di uno su oltre un milione: è pertanto evidente che la probabilità di avere, in dodici anni, ben due eventi (agosto 2003 e luglio 2015) così lontani dalla media indica che l’insieme statistico non rappresenta più il campione. E questo è vero, in quanto, infatti, le temperature medie stanno aumentando, e manca pertanto il criterio della stazionarietà del campione statistico.

Anomalie delle temperature minime, medie e massime registrate a luglio. Dati Dip. di Fisica - Unito.

Anomalie termiche a luglio rispetto al periodo climatico di riferimento 1961-90 per le temperature minime, medie e massime). Dati Dip. di Fisica – Unito.

Anche il grafico che mostra il numero di giorni, nei vari mesi di luglio del terzo millennio, con superamento di determinate soglie termiche (rispettivamente 27, 30 e 33 °C per le temperature minime, medie e massime) vede primeggiare senza rivali luglio 2015, in cui in ben 26 giornate su 31 è stata superata la soglia delle minime. Neppure agosto 2003 fece registrare così tanti giorni sopra soglia.

numero di giorni, nei vari mesi di luglio del terzo millennio, con superamento di determinate soglie termiche (rispettivamente 27, 30 e 33 °C per le temperature minime, medie e massime

Numero di giorni nei mesi di luglio con superamento di determinate soglie termiche (rispettivamente 27, 30 e 33 °C per le temperature minime, medie e massime). Dati Dip. di Fisica – Unito.

Ragionando non tanto sui valori assoluti ma sulle anomalie (sempre calcolate rispetto al periodo 1961-90), il discorso non cambia, anzi diventa ancora più evidente l’anomalia del mese appena trascorso.

numero di giorni, nei vari mesi di luglio del terzo millennio, con superamento di determinate soglie termiche (rispettivamente 27, 30 e 33 °C per le temperature minime, medie e massime

Numero di giorni, nei vari mesi di luglio del terzo millennio, con anomalie rispetto al periodo di riferimento 1961-90 superiori a 5 °C per le temperature minime, medie e massime. Dati Dip. di Fisica – Unito.

Valutando infatti le giornate con anomalie superiori a 5 °C, si vede come, a fronte di svariati anno con valori compresi tra zero e otto, il 2015 svetti con 16 giornate con anomalie delle minime e 23 giornate con anomalie delle massime oltre i 5 °C. Anche in questo caso, agosto 2003 si inchina a luglio 2015…

Dati Dip. di Fisica - Unito.

Temperature minime, medie e massime relative al 2014 (linee sottili), al 2015 (linee spesse) ed alla media climatica 1961-90 (puntini). Dati Dip. di Fisica – Unito.

Ma ho lasciato per ultimo il grafico più eclatante, che rende comprensibile in modo immediato quanto luglio 2015 sia risultato fuori statistica rispetto alla media ed al trentennio climatico 1961-90. In questo grafico vediamo tre terne di curve: minime, medie e massime relative al 2014 (linee sottili), al 2015 (linee spesse) ed alla media climatica (puntini). Beh, che dire: la curva delle temperature medie di luglio 2015 supera spesso la media climatica delle massime, e per 25 giornate su 31 supera le massime registrate un anno fa nello stesso periodo. La stessa cosa vale per l’andamento delle medie del 2015 rispetto alla media climatica delle minime ed alle minime del 2014. E penso che questo sia sufficiente… anche perché la curva delle massime è veramente incommentabile: basti dire che soltanto il 31 luglio 2015 è risultato sottomedia, e soltanto come valori massimi.

Elenco delle temperature minime, medie e massime più alte registrate nel periodo 1961-2015. I valori relativi al periodo 1961-1991 sono ricostruiti. Dati Dip. di Fisica - Unito.

Elenco delle temperature minime, medie e massime più alte registrate nel periodo 1961-2015. I valori relativi al periodo 1961-1991 sono ricostruiti. Dati Dip. di Fisica – Unito.

Nella tabella seguente andiamo proprio a vedere come si sono classificate le giornate singole di questo luglio nella classifica globale. Sono mostrate le prime venti posizioni per ogni valore termico (minima, media e massima), e abbiamo volutamente incluso, pur indicandoli in corsivo, anche i valori ricostruiti relativi al periodo 1961-90 (quando la stazione non c’era), in modo da collocare i valori attuali nel contesto storico. Si nota come, per tutte le temperature, ci siano tra otto e dieci giornate di luglio 2015 posizionate tra le venti più calde dal 1961. Aggiornato il record della minima del 13 agosto 2003, 26,5 °C, con i 27,1 °C del 7 e del 16 luglio; solo sfiorato il record di 32,3 °C delle medie dell’11 agosto 2003, con i 32,1 °C del 6 luglio; mentre si è avvicinato “al podio” delle massime la giornata del 21 luglio, con 38,1 °C, ancora lontano dai 39,4 °C dell’11 agosto 2003. Notiamo infine come, togliendo luglio 2015 e agosto 2003, rimangano pochi altri casi di giornate così calde in classifica.

Piogge cumulate nei vari mesi di luglio del III millennio. Dati Dip. di Fisica - Unito.

Piogge cumulate nei vari mesi di luglio del III millennio. Dati Dip. di Fisica – Unito.

L’ultimo grafico che vediamo si riferisce alle cumulate di pioggia registrate nel mese di luglio nella nostra stazione. Anche qui i valori sono stati ricostruiti nello stesso modo di quelli termici. Notiamo come sicuramente luglio 2015 sia risultato un mese generalmente poco piovoso, anche se già solo nel terzo millennio il luglio 2006 fu ancora meno piovoso. Si sono registrati soltanto tre episodi di pioggia, di cui due significativi, ed uno responsabile di oltre il 75% della precipitazione, legata ad un singolo evento temporalesco. Del resto, la maggior parte delle piogge estive sono legate ad episodi temporaleschi. Certo, paragonare luglio 2015 ai due anni precedenti, in cui si registrarono quasi 150 mm ciascuno, è impressionante. Tra l’altro, tenendo conto dell’insieme alte temperature – scarse precipitazioni, si intuisce che l’evapotraspirazione sia stata ingente e tale da far evaporare gran parte dell’acqua contenuta nello strato delle radici delle piante, trasformando una stagione che fino a giugno era idrologicamente non critica in una stagione a rischio di siccità (e certamente i pochi mm di pioggia caduti nella giornata odierna non possono risolvere la crisi).

In conclusione, dall’analisi dei valori acquisiti dalla nostra stazione di fisica si evince che abbiamo vissuto un altro mese che, alla luce dei riscontri statistici, può essere definito straordinario dal punto di vista termico, a dodici anni di distanza da un’estate storica caratterizzata da un altro mese straordinario. Sono caduti diversi record nella nostra stazione: quello delle minime in un singolo giorno, quello delle medie mensili di minime, medie e massime, e quello delle anomalie medie mensili minime e medie. A livello di pioggia, luglio 2015 è stato secco ma non il più secco, grazie ad un singolo evento temporalesco. Le previsioni per la settimana entrante mostrano la possibilità di un’altra robusta ondata di calore, e quindi vedremo se il 2015 avrà altre cartucce in serbo per archiviare definitivamente i record del 2003, o se – cosa che sinceramente speriamo – i valori rimarranno più contenuti.

L’agonia dei ghiacciai alpini

Riscaldamento globale. Cambiamento climatico. Quante volte abbiamo letto sui giornali queste parole, o le abbiamo sentite nominare in televisione? Beh, recentemente direi abbastanza spesso. Eppure in molte persone rimane una sensazione di dubbio: sarà vero? Oppure è un complotto degli scienziati per avere più fondi?

Gruppo Levanne fotografato nell'agosto 2000

Gruppo Levanne fotografato nell’agosto 2000

Gruppo Levanne fotografato nel luglio 2015

Gruppo Levanne fotografato nel luglio 2015

Questo post non intende dare una risposta a queste domande, ma fornire un elemento su cui meditare. Lo scorso weekend mi sono trovato sul celebre sentiero del Re, in valle Orco, sopra i due laghi artificiali Serrù e Agnel e nei pressi del lago Nero e del lago Losere. Un posto paradisiaco, per inciso, ed infatti siamo proprio nel parco del Gran Paradiso. Camminando, mi sono ricordato di alcune foto che avevo scattato, ancora su pellicola, anni prima, lungo il sentiero.

Ghiacciai Capra e Carro fotografati nell'agosto 2000

Ghiacciai Capra e Carro fotografati nell’agosto 2000

Ghiacciai Capra e Carro fotografati nel luglio 2015

Ghiacciai Capra e Carro fotografati nel luglio 2015

Una volta tornato, ho cercato nel mio archivio e le ho trovate: si riferivano all’agosto 2000, quindici anni fa.Tra l’altro, la ricerca delle foto mi ha fatto pensare come, fino ad una decina di anni fa, cercare una foto significava prendere in mano un album, ripercorrere pagina dopo pagina i momenti passati, con una sensazione anche tattile ed odorosa delle foto. Ora la ricerca si riduce ad un’affannoso scartabellare a destra e a manca, sperando di trovare la maledetta chiavetta che contiene le foto, o almeno il suo backup… nella speranza che i dati non si siano dissolti.

In particolare, ho trovato due coppie di foto con inquadrature molto simili tra loro: evidentemente, i miei gusti fotografici non sono cambiati molto in questi quindici anni. Invece, lo stato dei ghiacciai…

Non pretendo di essere un fotografo professionista; in passato usavo una compatta, ed ora il telefonino. Ma ritengo che le foto siano di fattura sufficiente per permettere di rilevare il cambiamento dello stato dei ghiacciai in questi quindici anni. Per correttezza, premetto che ora siamo a luglio, mentre le foto del 2000 si riferivano ad agosto. La differenza non è banale: un anno fa alcuni passi alti erano ancora impraticabili per neve, in questi giorni. Ora invece solo le cime più alte conservano ancora un po’ di neve fresca, ma sta fondendo in modo rapidissimo grazie all’interminabile ondata di caldo di questo luglio.

Inoltre, spero che questi panorami con neve possano un po’ alleviare la calura di chi è costretto in città.

Si possono vedere cambiamenti nei ghiacciai in soli quindici anni? Dando uno sguardo alle foto, direi proprio di sì. Le maestose lingue glaciali che ancora nel 2000 si protendevano dal ghiacciaio del Nel, di Capra e Carro non esistono più, e sono state sostituite da esili residui di nevato che hanno i giorni contati, grazie ai colpi di zero termico sopra i 4500 metri che si sono susseguiti prima a inizio giugno e poi dai primi di luglio in modo quasi ininterrotto. L’ingrandimento del ghiacciaio del Carro mostra la parte terminale del ghiacciaio morente, interessata da fusione rapida. Il ghiacciaio di Nel presenta tutta una lunga frattura nella sua parte superiore, mentre anche qui la parte inferiore evidenzia un rateo di fusione straordinario.

Zoom sul ghiacciaio del Carro (foto luglio 2015)

Zoom sul ghiacciaio del Carro (foto luglio 2015)

Queste immagini sono emblematiche della tremenda agonia che sta caratterizzando quasi tutti i ghiacciai alpini. Lungo il sentiero, infiniti rivoli di acqua corrente e fresca testimoniano il processo di fusione in atto a tempi supersonici, date le temperature presenti in questi giorni (la stazione ARPA della Gran Vaudala, a oltre 3000 m di quota, ha spesso evidenziato temperature massime superiori a 10 °C in questi giorni).

Ecco, questo è un segno del cambiamento climatico. Lo abbiamo a due passi da casa, sulle nostre amate Alpi Graie. E il segno ci dice che il riscaldamento globale interessa anche le nostre Alpi. Tra altri quindici anni, forse, di questi ghiacciai non rimarranno che sparute chiazze di neve qua e là. O forse neppure quelle… Il ghiaccio non ama valori di zero termico superiori alla quota del Monte Bianco…

Civiltà dei turisti... così si presentavano i dintorni del lago Nero al nostro ritorno.

Civiltà dei turisti… così si presentavano i dintorni del lago Nero al nostro ritorno. E non possiamo neppure chiamarli maiali, perché i maiali sono più puliti!

Eppure… noi esseri umani siamo troppo distratti, e spesso non vediamo questo tipo di segnale, pur se così evidente. Sulle Alpi magari ci veniamo anche, e spesso, ma solo a fare un veloce barbecue, o una rapida camminata e poi via. Rigorosamente in auto, se possibile, e magari pure posteggiando il più vicino possibile al posto prescelto.
Quante volte ho sentito dire “ieri ho passato una splendida giornata in montagna, e respirato aria pura”… magari quella respirata sul ciglio della strada, dove l’aria non è troppo dissimile a quella della città.
E poi, magari, dopo aver mangiato e sbevazzato, i rifiuti li si lascia pure lì in bellavista. Infatti, camosci e marmotte vanno pazzi per la plastica e la carta… e soprattutto per le bottiglie vuote di birra!

Ondate di tempesta: l’uragano Sandy

Ondate di tempesta: l’uragano Sandy

Ripropongo qui sul mio blog la traduzione in italiano di un interessante post pubblicato ieri 29 ottobre 2014 su Real Climate, in questo sito. Con l’intento di pubblicizzare un libro sulle conseguenze dell’uragano Sandy negli USA, sono stati estratti da tale libro alcuni passaggi chiave di poche righe nei quali si discute in modo (a mio giudizio) molto chiaro sul funzionamento dei modelli per le previsioni meteorologiche, sui collegamenti tra eventi estremi e cambiamenti climatici, e sulla questione dell’importanza delle politiche di adattamento e mitigazione nella prevenzione dei danni futuri. La questione assume particolare rilevanza pensando che, non più tardi di tre settimane fa, diverse aree del nostro paese hanno subito ancora una volta danni ingenti ad opera di fenomeni estremi. Anche se la genesi dei fenomeni era diversa, la discussione sulla relazione tra il verificarsi di tali eventi ed i cambiamenti climatici in corso appare del tutto adatta, così come appare scritta appositamente per noi anche la discussione sulle opere di mitigazione ed adattamento necessarie per minimizzare danni e vittime.

Ho tradotto la parola inglese “surge” del titolo originale del post (Storm surge: Hurricane Sandy) con l’espressione italiana “ondate”. Non si tratta di una traduzione letterale, ma la scelta è stata veicolata dalla considerazione che il principale effetto distruttivo dell’uragano sulla terraferma è stato causato dalla violenza delle ondate lungo le aree costiere, e dall’allagamento delle zone sotterranee e, talora, anche superficiali da parte di acqua marina proveniente dall’oceano.

Allo stesso tempo, ho tradotto “storm” con “tempesta”, da intendersi non nel senso di grandine ma in quello di sistema meteorologico in grado di provocare danni a causa dell’estrema intensità del vento e, talora, anche delle precipitazioni ad essa associate.

Infine, ricordo che “uragano” (hurricane) è il modo americano di chiamare i cicloni tropicali atlantici, che invece in Asia sono chiamati tifoni (typhoon) ed in Oceania semplicemente cicloni (cyclones o cyclonic storms). Questi sistemi hanno una genesi e dinamica completamente diversa da quelli che si verificano invece alle medie latitudini, e che sono sempre chiamati cicloni ma extratropicali (extratropical cyclones): in quelli tropicali, infatti, l’energia del sistema deriva dalla condensazione del vapore acqueo “aspirato” dal sistema sopra la superficie del mare (e questo è il motivo per il quale, generalmente, tali sistemi si dissipano quando si trovano su mari più freschi o sopra la teraferma, dove la quantità di vapore acqueo è minore), mentre in quelli extratropicali l’energia è insita alla baroclinicità del sistema e proviene dalla differenza di temperatura tra la massa d’aria calda (tipicamente subtropicale) e quella fredda (tipicamente subpolare, talora artica) dal cui scontro ha origine il sistema. Per concludere questa breve digressione, ricordiamo che anche nel Mediterraneo possono formarsi dei cicloni tropicali (vengono chiamati Medicane – crasi di Mediterranean hurricane – oppure TLC – acronimo di Tropical Like Cyclones: si veda questo mio post scritto in occasione dell’ultimo evento verificatosi sul Mediterraneo, nel novembre 2011), anche se sono piuttosto rari (mediamente nell’ultimo quarantennio se ne sono verificati circa uno all’anno); poiché sia la temperatura superficiale sia l’estensione del Mediterraneo sono notevolmente inferiori a quelle di un oceano tropicale, tali sistemi hanno una genesi mista e generalmente rimangono di debole intensità per tutta la loro breve vita.

Veniamo ora alla traduzione del post di Real Climate.

copertina libro Adam Sobel "Storm Surge: Hurricane Sandy, Our Changing Climate, and Extreme Weather of the Past and Future"

La copertina del nuovo libro di Adam Sobel “Storm Surge: Hurricane Sandy, Our Changing Climate, and Extreme Weather of the Past and Future”

Nel secondo anniversario del giorno in cui il Superstorm Sandy ha toccato terra [NdT: 29 ottobre 2012], abbiamo preparato alcuni estratti del nuovo libro di Adam Sobel “Storm Surge: Hurricane Sandy, Our Changing Climate, and Extreme Weather of the Past and Future”. Si tratta di un’ottima lettura che spazia dalla meteorologia dell’evento, alla preparazione, alle risposte e implicazioni per il futuro.

Estratti

Il 28 ottobre 2012, un uragano gigante e deforme ha fatto una svolta a sinistra rispetto alla sua precedente traiettoria verso nord sull’Oceano Atlantico e si è diretto verso la costa del New Jersey. La sera del 29 ottobre, a seguito di un percorso mai osservato in precedenza in 160 anni di osservazioni di uragani sull’Atlantico, il centro della tempesta ha toccato terra nei pressi di Atlantic City.

La dimensione della tempesta, così come la traiettoria, non hanno precedenti nella memoria scientifica. Sandy è stato il più grande uragano mai osservato nei diversi decenni in cui esistono misure di buona qualità delle dimensioni degli uragani atlantici.

Uragano Sandy

Immagine dell’uragano Sandy (fonte: NASA)

Quando toccò terra, venti di burrasca interessarono una gran parte della costa orientale e un enorme gruppo di costruzioni sull’oceano. A nord del centro del ciclone, le correnti orientali di Sandy si spinsero per oltre mille miglia sul mare prima di arrivare a terra, creando enormi ondate: una serie gigante di lente ondate che hanno letteralmente trascinato l’oceano verso l’interno, come un’enorme alta marea, sommergendo alcuni dei territori più densamente popolati, economicamente attivi, e preziosi.

L’entità del disastro è stata storica. A New York, l’acqua non era mai arrivata così in alto almeno dal 1821, se poi. Per le persone nelle zone più colpite, si è trattato di un evento che gli ha rovinato la vita, in alcuni casi letteralmente.

Mentre il bilancio delle vittime è stato contenuto rispetto all’uragano Katrina, ed estremamente basso rispetto a quello dei peggiori disastri causati da cicloni tropicali nella storia recente di tutto il mondo [NdT: si veda, ad esempio, il caso del tifone Haiyan sulle Filippine, nel 2013, che ha fatto oltre seimila vittime], è stato comunque abbastanza alto da essere gravemente scioccante qui, a New York City, dove perdere la vita per un uragano era visto come un qualcosa che accade solo in luoghi lontani. Molte, moltissime persone hanno visto le loro case distrutte, e in alcuni casi interi quartieri. L’uragano ha paralizzato le infrastrutture di uno dei più vivaci centri economici e culturali del mondo per settimane intere. Il danno economico è stato conteggiato in almeno cinquanta miliardi di dollari, e forse ancora di più: 65 miliardi.

Vista aerea della distruzione causata da Sandy nelle aree costiere del New Jersey scattatadurante una missione del 1-150 Assault Helicopter Battalion, New Jersey Army National Guard, il giorno 30 ottobre 2012  (foto U.S. Air Force di Master Sgt. Mark C. Olsen/Released).

Vista aerea della distruzione causata da Sandy nelle aree costiere del New Jersey scattatadurante una missione del 1-150 Assault Helicopter Battalion, New Jersey Army National Guard, il giorno 30 ottobre 2012 (foto U.S. Air Force di Master Sgt. Mark C. Olsen/Released).

Le lezioni fondamentali che possiamo trarre da Sandy ruotano attorno alle previsioni: come facciamo le previsioni del comportamento dell’atmosfera, e il modo in cui vi rispondiamo una volta che sono state fatte. Fare le previsioni del tempo è un’impresa unica. La gente fa previsioni di molti tipi: sui risultati delle elezioni, o sulle partite di baseball, o sulle fluttuazioni del mercato azionario, o su questioni economiche ancor più grandi. Alcune di queste previsioni si basano su modelli matematici. La maggior parte di questi modelli matematici sono statistici, nel senso che usano regole empiriche sulla base di quanto è successo in passato. I modelli utilizzati per le previsioni del tempo (e i loro parenti stretti, i modelli per la previsione del clima), al contrario, sono dinamici. Usano le leggi della fisica per prevedere come il tempo cambia da un momento all’altro. Le leggi che regolano le elezioni o il mercato – le regole del comportamento della moltitudine di persone che determinano i risultati – non sono conosciute bene, se esistono. I modelli devono quindi essere costruiti sull’ipotesi che l’esperienza passata sia indicativa dei risultati futuri. Se le previsioni meteorologiche fossero ancora fatte in questo modo, sarebbe stato semplicemente impossibile da prevedere, giorni prima dell’evento, che l’uragano Sandy svoltasse a sinistra e colpisse la costa americana durante il suo moto verso ovest. Nessun meteorologo aveva mai visto succedere una cosa del genere, perché nessuna tempesta si era mai comportata così. Per la stessa ragione, nessun modello statistico addestrato sulla base del comportamento passato avrebbe riprodotto quanto accaduto come risultato probabile.

Nel caso di Sandy, i meteorologi non solo sono riusciti a vedere questo risultato come una possibilità già oltre una settimana prima del tempo, ma erano abbastanza sicuri che ciò accadesse da quattro o cinque giorni prima che l’uragano arrivasse [NdT: a New York]. Le previsioni, come quelle che abbiamo visto, che hanno previsto come Sandy si è formato e come si è trasferito fin sulla costa, non nascono dal cielo. Sono invece il risultato di un secolo di notevole successo scientifico, a partire dai primordi in Norvegia nei primi anni del 1900 [NdT: la teoria della ciclogenesi della famiglia Bjerkenes]. Il fondamento intellettuale di tutta la costruzione delle previsioni del tempo era l’idea che le leggi della fisica avrebbero potuto essere utilizzate per capire il tempo; un’idea radicale agli inizi del XX secolo. Realizzare questo obbiettivo ha richiesto moltissimi progressi concettuali, nel corso dei decenni, e miglioramenti nella tecnologia (in particolare i computer digitali).

I più gravi problemi evidenziati da Sandy non sono consistiti nelle attività di preparazione subito prima del disastro, o nella risposta all’emergenza immediatamente dopo. Ma sono invecelegati alla costruzione delle nostre coste nell’arco di molti decenni. A lungo termine, inoltre, ci sono state ottime previsioni di ciò che potrebbe accadere al nostro ambiente costruito lungo l’acqua costiera nella zona di New York City. Non si tratta, in questo caso, di previsioni di un singolo evento in una data e ora specifiche, ma piuttosto di valutazioni scientifiche dei rischi di una tempesta così violenta come è stata Sandy, o ancora peggio. Si sapeva da decenni, almeno, che New York è vulnerabile a inondazioni indotte da una tempesta o un uragano. Così come erano anche note le conseguenze che ne sarebbero derivate, a grandi linee. L’inondazione delle linee della metropolitana, ad esempio, era stata immaginata sin dal 1990.

Sandy non ha avuto bisogno dei cambiamenti climatici per verificarsi, e la storia del disastro non ha bisogno di cambiamenti climatici per renderlo importante. Il tema principale di questo libro è Sandy, e si può leggere gran parte del libro senza vedere menzionati i cambiamenti climatici. Ma è un fatto che i cambiamenti climatici si delineano protagonisti sullo sfondo quando cerchiamo di pensare a cosa significhi Sandy per il futuro.

Sandy non è stato solo un estremo colpo di sfortuna, qualcosa che si può supporre non accadrà ancora per qualche centinaio di anni. D’altra parte, non rappresenta neppure “la nuova normalità”, cioè qualcosa che è sicuro che accadrà di nuovo presto, e spesso d’ora in poi.

Quasi certamente si tratta di una via di mezzo. Sarà molto improbabile vedere un altro Sandy quest’anno, o l’anno prossimo, o anche nel prossimo decennio, o nei prossimi due. Non siamo molto più vulnerabili oggi di quanto non lo eravamo un paio di decenni fa. Ma, quando è arrivato Sandy, abbiamo capito di essere più vulnerabili di quanto immaginassimo. E il ritmo del cambiamento sta accelerando.

A causa [NdT: della crescita] del livello del mare, soprattutto, il rischio di ulteriori catastrofi tipo Sandy è in aumento. La scienza degli uragani e dei cambiamenti climatici è ancora giovane, e alcune delle caratteristiche che hanno reso Sandy e le sue ondate così grandi (le loro enormi dimensioni, il carattere ibrido, la svolta a sinistra e l’approdo con traiettoria verso ovest) sono questioni per le quali le connessioni con il clima sono meno note. Ma, a causa dell’innalzamento del livello del mare, si sa che i grandi eventi alluvionali lungo le coste diventeranno più frequenti, quasi indipendentemente da quali siano queste connessioni.

Per quanto riguarda il potenziale di allagamento, ogni metro di innalzamento del livello del mare è equivalente ad un sostanziale aumento dell’intensità delle tempeste. Usando la vecchia scala di intensità degli uragani Saffir-Simpson, quando teneva ancora conto dell’altezza delle ondate di una tempesta (prima che fosse semplificata [NdT: nel 2009] nel tener soltanto conto della velocità massima del vento), il passaggio dalla prima alla seconda categoria, o dalla seconda alla terza, ha fatto diventare molto probabile il vedere un incremento permanente di tre piedi [NdT: circa un metro] del livello del mare, e anche un incremento di sei piedi [NdT: circa due metri] non è affatto fuori questione. Questo è più o meno equivalente ad un aumento di una o due categorie nell’intensità degli uragani.

D’altra parte, il livello del mare sale lentamente. Abbiamo tempo per prepararci. Se ci adattiamo ad esso, poi nel futuro l’innalzamento del livello del mare di un piede [NdT: circa 30 cm] non avrà gli stessi effetti di un innalzamento equivalente oggi, perché saremo più protetti. Potremmo mettere in atto altre difese che avrebbero lo stesso effetto come se avessimo sollevato le nostre città e paesi lungo il mare. Pertanto, un aumento di quattro piedi [NdT: 1.30 m circa] nel futuro non provocherà un disastro come lo farebbe un aumento di quattro piedi oggi. Si tratta di adattamento al cambiamento del clima. Nel linguaggio della politica climatica, la parola “adattamento” si riferisce a qualsiasi azione intrapresa per ridurre i danni del riscaldamento.

Ancora meglio, si potrebbe fare allo stesso tempo anche la mitigazione del clima … Se dovessimo ridurre abbastanza [NdT: le emissioni di gas serra], si potrebbe rallentare in modo significativo il rateo del riscaldamento globale, e conseguentemente il tasso di innalzamento del livello del mare. Una parte del riscaldamento e dell’innalzamento del livello del mare sono già inevitabili, a causa del carbonio che abbiamo già immesso in atmosfera. Ma se dovessimo raggiungere un accordo internazionale serio per trasformare i nostri sistemi energetici in modo che siano più efficienti e facciano più affidamento su fonti rinnovabili come l’energia solare ed eolica – o anche quella nucleare, anche se questo porta un altro insieme di rischi – potremmo intaccare in maniera significativa questo problema.

Però, riusciremo mai a fare qualcosa di tutto ciò?