L’eclissi solare del 20 marzo 2015

Nell'immagine, il punto scuro sulla superficie terrestre rappresenta la zona in cui si ha l'eclissi totale di Sole, mentre l'area grigia indica le zone in cui si vede un'eclissi parziale di Sole, con la superficie del disco solare tanto più "intaccata" dalla Luna quanto più ci si viene a trovare vicini alla zona di eclissi totale. Fonte: G. Veneziano.

Nell’immagine, il punto scuro sulla superficie terrestre rappresenta la zona in cui si ha l’eclissi totale di Sole, mentre l’area grigia indica le zone in cui si vede un’eclissi parziale di Sole, con la superficie del disco solare tanto più “intaccata” dalla Luna quanto più ci si viene a trovare vicini alla zona di eclissi totale. Fonte: G. Veneziano.

Il prossimo 20 marzo 2015, in Italia si verificherà un’eclissi solare. Il fenomeno fu osservato sin da tempi molto remoti, e siccome le conoscenze scientifiche dell’epoca non riuscivano a darne una spiegazione plausibile, veniva considerato portatore di sciagure (in questo documento si può trovare un bel riassunto di varie credenze ed aneddoti in diverse epoche storiche).

Oggi sappiamo che un’eclissi è un fenomeno ottico di oscuramento di una parte o anche tutto il disco solare da parte della Luna. Si verifica sempre in condizioni di novilunio o luna nuova. Si tratta di un evento piuttosto raro: Sole, Luna e Terra devono essere perfettamente allineati in quest’ordine; ciò è possibile solo quando la Luna, la cui orbita è inclinata di cinque gradi rispetto all’eclittica, interseca quest’ultima in un punto detto nodo. Quando il nodo si trova tra la Terra e il Sole, l’ombra della Luna passa in alcuni punti della superficie terrestre e si assiste a un’eclissi solare. Se invece il nodo si trova dalla parte opposta, si ha un’eclissi lunare.

Il fenomeno comunque si presenta così come lo vediamo grazie ad una fortunata coincidenza. Infatti, la distanza Terra-Sole è circa 400 volte maggiore della distanza Terra-Luna, ma anche il diametro del Sole è circa 400 volte maggiore del diametro della Luna; proprio perchè questi rapporti sono all’incirca uguali, Sole e Luna visti dalla Terra appaiono praticamente grandi uguali, e la loro dimensione angolare è pari a 0.5 gradi di arco. La Luna colpita dal Sole, proietta un cono d’ombra che, quando raggiunge la Terra, è largo solo 160 chilometri e viaggia a velocità comprese tra i 1800 chilometri orari all’equatore, fino a 7200 chilometri orari a latitudini più elevate, per cui può coprire un punto sulla superficie terrestre solo per alcuni minuti (all’incirca 8-9 all’equatore).

Percorso apparente dell'eclissi dell'11 agosto 1999 in cui si evidenzia la zona di totalità, sull'Europa, e le zone in cui risultò visibile un'eclissi parziale, con l'evidenziazione della percentuale di disco solare coperto dalla Luna. Fonte: G. Veneziano.

Percorso apparente dell’eclissi dell’11 agosto 1999 in cui si evidenzia la zona di totalità, sull’Europa, e le zone in cui risultò visibile un’eclissi parziale, con l’evidenziazione della percentuale di disco solare coperto dalla Luna. Fonte: G. Veneziano.

Dallo spazio un’eclissi solare si presenta come un cerchio di luce oscurata del Sole in moto su tutta la Terra. Ad esempio, questa animazione mostra, a titolo di esempio, la propagazione dell’ombra della Luna sulla superficie terrestre in occasione dell’eclissi di Sole dello scorso 11 agosto 1999. In tale occasione, il percorso della totalità dell’eclisse passò appena a nord dell’arco alpino, dopo aver sfiorato Parigi, e da tutte le città italiane si assistette soltanto ad una eclisse parziale con il disco solare coperto mediamente per il 90% del suo diametro.

Dopo aver visto perchè il fenomeno si verifica, cerchiamo ora di dare una risposta ad un’altra domanda: esistono, e se sì, quali sono le conseguenze di un’eclissi di Sole sulla fenomenologia meteorologica? Per dare una risposta, andiamo ad esaminare i dati raccolti da quattro stazioni meteorologiche in occasione dell’eclissi estiva di Sole sopra menzionata, praticamente l’ultima di un certo rilievo – pur se non totale – vista dall’Italia: quella dell’11 agosto 1999 (di cui qui si trova un interessante resoconto). Come stazioni meteorologiche abbiamo scelto: quella dell’università di Torino, ubicata sul tetto dell’istituto di fisica (da ora in poi UniTo); quella di Torino Buon Pastore, attiva fino al 2008 ed ubicata nella periferia urbana torinese (ToBP); quella dell’università del Piemonte Orientale, sede di Alessandria, ubicata sul tetto dell’edificio universitario (UniAl); e infine quella di Alessandria Lobbi, ubicata presso il casello di Alessandria Est, e quindi in area periferica, lontana dal centro cittadino (Lobbi).

Stazione meteorologica dell'Università a Torino.

Stazione meteorologica dell’Università a Torino.

Stazione meteorologica di Torino Buon Pastore.

Stazione meteorologica di Torino Buon Pastore.

Stazione meteorologica dell'Università ad Alessandria.

Stazione meteorologica dell’Università ad Alessandria.

Stazione meteorologica di Lobbi vicino ad Alessandria.

Stazione meteorologica di Lobbi vicino ad Alessandria.

Di queste quattro stazioni andiamo ora ad esaminare tre grandezze fisiche: la radiazione solare globale, la temperatura dell’aria e la velocità del vento. Premettiamo che i dati a cui facciamo riferimento non hanno la stessa frequenza di acquisizione: quelli relativi alle due stazioni universitarie sono infatti disponibili con frequenze di un dato ogni dieci minuti (UniTo e UniAl), mentre quelli delle altre due stazioni hanno frequenze di un dato ogni mezzora.

La radiazione solare globale mostra, in tutte e tre le stazioni, un brusco calo per un’ora e mezza circa, passando da valori compresi tra circa 600 e 700 W m-2 a valori ovunque inferiori a 100 W m-2 (riscontrati in precedenza tra le 5 e le 6 di mattina), per poi risalire su valori tra circa 730 e 850 W m-2, compatibili con la stagione in corso nel caso di un giorno soleggiato.

Andamento giornaliero della radiazione solare globale (espressa in W m-2) misurata nelle quattro stazioni meteorologiche prese in esame nel giorno 11 agosto 1999.

Andamento giornaliero della radiazione solare globale (espressa in W m-2) misurata nelle quattro stazioni meteorologiche prese in esame nel giorno 11 agosto 1999.

Andamento giornaliero della temperatura dell'aria (misurata in °C) misurata nelle quattro stazioni meteorologiche prese in esame nel giorno 11 agosto 1999. Al fine di evidenziare il fenomeno, il grafico è stato ritagliato tra le ore 8 e le ore 14.

Andamento giornaliero della temperatura dell’aria (misurata in °C) misurata nelle quattro stazioni meteorologiche prese in esame nel giorno 11 agosto 1999. Al fine di evidenziare il fenomeno, il grafico è stato ritagliato tra le ore 8 e le ore 14.

I diversi valori di picco riflettono sia la diversa torbidità del cielo nelle diverse postazioni, sia un’eventuale staratura dei sensori (specialmente per quello di UniAl, se paragonato con Lobbi). Il rapporto percentuale tra il valore minimo (tra le ore 10 e le 11) e massimo (tra le 11:30 e 12:30) del giorno, nei tre siti, vale: 8% per UniTo, 10% per ToBP, 9% per UniAl e 10% per Lobbi.

La temperatura, nelle quattro stazioni, mostra un andamento del tutto paragonabile ed evidenzia un anomalo e brusco calo termico, a metà mattina, proprio – non inaspettatamente – in corrispondenza alle ore dell’eclissi, e quantificabile in 1.5-2.5 °C circa, col minimo posizionato intorno alle ore 11, e di durata praticamente trioraria (dalle 9:30 alle 12:30).

Il modulo della velocità orizzontale del vento è una grandezza che risente, ovviamente, molto di più delle precedenti del posizionamento della stazione meteorologica. Le stazioni di ToBP e Lobbi, ad esempio, sono installate al livello del suolo stradale, ed in esse l’anemometro (non visibile in figura, nel caso di ToBP) non è posizionato in maniera standard, ovvero è posto ad altezze inferiori ai canonici 10 m.

Le stazioni di UniTo e UniAl, invece, sono posizionate sul tetto dei rispettivi edifici universitari, ad altezze di una ventina di metri dal fondo stradale; tuttavia, il palo anemometrico di UniTo (non visibile in figura, in quanto messo nel punto da quale è stata presa la foto) è sopraelevato di 10 m rispetto al livello del tetto, mentre quello di UniAl lo è di soli 2,5 metri. Questo fa ovviamente sì che il dato di UniTo risulti maggiore rispetto a quello delle altre località. In questo caso, inoltre, è anche importante il tempo di media del dato, che per ToBP e Lobbi è di mezzora, e per UniTo e UniAl di dieci minuti. Non ho voluto, tuttavia, manipolare troppo i dati, al fine di mostrare i loro reali andamenti osservati.

Andamento giornaliero del modulo della velocità del vento (misurato in m/s) misurato nelle quattro stazioni meteorologiche prese in esame nel giorno 11 agosto 1999. Al fine di evidenziare il fenomeno, il grafico è stato ritagliato tra le ore 8 e le ore 14.

Andamento giornaliero del modulo della velocità del vento (misurato in m/s) misurato nelle quattro stazioni meteorologiche prese in esame nel giorno 11 agosto 1999. Al fine di evidenziare il fenomeno, il grafico è stato ritagliato tra le ore 8 e le ore 14.

Pur tenendo conto della grande variabilità intrinseca della grandezza fisica modulo della velocità del vento, si nota come, in tre stazioni, i valori centrati sulle ore 11 non mostrano incrementi rispetto a quelli delle ore 10, mentre tendono ad aumentare leggermente verso le ore 12. Fa eccezione ToBP, che invece mostra un valore pressoché stabile in mattinata.

L’analisi combinata dei vari grafici evidenzia come il calo di radiazione solare causato dall’eclissi dell’11 agosto 1999 abbia interrotto il riscaldamento del terreno, e questo abbia rallentato leggermente anche l’intensità della brezza diurna. L’effetto risulta quindi paragonabile a quello dovuto al passaggio di un esteso banco di nubi (a parte le eventuali precipitazioni ad esse associate).

Andamento giornaliero della radiazione solare globale (espressa in W m-2) misurata a UniTo nei giorni 20 marzo degli anni compresi tra il 2005 ed il 2014. Sono ovviamente mostrate soltanto le ore di sole.

Andamento giornaliero della radiazione solare globale (espressa in W m-2) misurata a UniTo nei giorni 20 marzo degli anni compresi tra il 2005 ed il 2014. Sono ovviamente mostrate soltanto le ore di sole.

Vediamo ora, sulla base dei dati registrati nella stazione di UniTo negli ultimi anni, cosa è lecito aspettarsi il prossimo 20 marzo 2015 a livello di quantitativi di radiazione.

Innanzitutto osserviamo i grafici relativi alla radiazione osservata negli ultimi dieci anni (dal 2005 al 2014) nella stazione UniTo. Come si vede dalla figura, nei dieci anni si sono avute giornate con nuvolosità di vario tipo (si notano anche i picchi di radiazione superiori a quelli delle giornate a cielo sereno, nel 2010, dovuti alla riflessione da parte delle nubi in condizioni di cielo poco nuvoloso), per cui l’insieme statistico, pur se limitato a soli dieci anni, risulta abbastanza indicativo della situazione che potrebbe accadere il prossimo 20 Marzo. La curva nera e spessa indica il valore medio nel decennio considerato.

A questo punto, possiamo ipotizzare a quanto ammonterebbe l’oscuramento causato dall’eclissi. Abbiamo fortunatamente già a disposizione tutti i dati astronomici relativi all’eclissi: a Torino, l’eclissi inizierà alle 9:24 e si concluderà alle 11:44, ora locale solare, e la porzione di disco solare arriverà ad un valore massimo del 66% alle ore 10:30. Ipotizzando una variazione lineare della radiazione solare tra il 100% alle 9:22 ed il 66% alle ore 10:30, per tornare al 100% alle ore 11:41 (dati tratti da questa fonte). Pertanto, risulta possibile valutare la radiazione che si sarebbe ottenuta in ognuno dei dieci anni precedenti se vi fosse stata un’eclissi con le stesse caratteristiche, e pertanto valutare la quantità di radiazione che non sarebbe giunta a terra: chiameremo tale quantitativo “radiazione eclissata”. Tali valori sono mostrati nella figura seguente (in basso a destra).

Andamento giornaliero del quantitativo di radiazione eclissata (espressa in W m-2) che sarebbe stata misurata a UniTo nei giorni 20 marzo degli anni compresi tra il 2005 ed il 2014 se si fosse verificata l'eclissi. Per motivi grafici, si è ristretto l'asse dei tempi alle sole ore dell'eclissi (tra le 9 e le 12).

Andamento giornaliero del quantitativo di radiazione eclissata (espressa in W m-2) che sarebbe stata misurata a UniTo nei giorni 20 marzo degli anni compresi tra il 2005 ed il 2014 se si fosse verificata l’eclissi. Per motivi grafici, si è ristretto l’asse dei tempi alle sole ore dell’eclissi (tra le 9 e le 12).

Andamento giornaliero del quantitativo di radiazione media nel decennio 2005-2014 rilevata a UniTo (linea continua) e del quantitativo teorico medio senza la radiazione media eclissata eclissata (linea tratteggiata), entrambe espresse in W m-2.

Andamento giornaliero del quantitativo di radiazione media nel decennio 2005-2014 rilevata a UniTo (linea continua) e del quantitativo teorico medio senza la radiazione media eclissata eclissata (linea tratteggiata), entrambe espresse in W m-2.

Naturalmente, il grafico evidenzia valori di eclissamento diversi in funzione della nuvolosità presente nel giorno in questione. Ci sono due approssimazioni in questo grafico: la prima consiste nell’aver ipotizzato lineare il fattore di eclissamento del disco solare (questa ipotesi, pur se rozza, è – a mio giudizio – abbastanza ragionevole); la seconda consiste nell’aver ipotizzato che, se il disco solare viene elissato di un tot percento, anche la radiazione solare globale ricevuta a terra risulta eclissata della stessa percentuale. Quest’ultima approssimazione, a rigore, sarebbe valida per la sola componente diretta, e non per quella diffusa. Tuttavia, dal momento che, nell’intorno della stazione, la percentuale di eclissamento del disco solare non varia in modo apprezzabile, si può ritenere che anche questa seconda approssimazione comporti errori trascurabili rispetto alla precisione strumentale: il radiometro installato è infatti costituito da una termopila della Eppley Psp con range di misura 0÷2800 W/m² nella banda spettrale 0.285÷2.8 µm e possiede un’incertezza dell’1% (pari a circa 5-10 W/m²).

Considerando il valore della radiazione solare globale media nel decennio, si può far riferimento al grafico (in alto a sinistra) che mostra il valore medio della radiazione osservata e quello della radiazione osservata diminuita del quantitativo eclissato (linea tratteggiata). Sul Piemonte, l’eclissi si verificherà in mattinata, e quindi la radiazione eclissata risulterà essere attenuata, in media, di circa 200 W/m² nel momento del minimo. L’integrale dell’area sottesa tra le due curve fornisce il quantitativo di energia media perduta a causa dell’eclissi.

Radiazione solare osservata presso la stazione di UniTo oggi 15 marzo 2015 fino alle ore 16:00 solari.

Radiazione solare osservata presso la stazione di UniTo oggi 15 marzo 2015 fino alle ore 16:00 solari.

Il valore numerico di tale area è quantificabile in circa 0,88 MJ/m². A titolo di paragone, si può valutare quale sia il consumo di una lampadina ad incandescenza da 100W lasciata accesa per la durata dell’eclissi (circa 2 ore e 20 minuti): si trova 233 Wattora, ovvero 0,84 MJ/m², una quantità paragonabile alla radiazione eclissata per metro quadrato. Naturalmente, non si deve pensare che tale valore corrisponda esattamente al quantitativo di energia prodotta, in quanto la termodinamica insegna che nessun sistema fisico è in grado di trasformare interamente in energia elettrica o termica tutta la radiazione solare ricevuta. Si noti tuttavia come il valore di minimo raggiunto dalla curva media abbia un valore di circa 100 W/m², che risulta pienamente compatibile con il valore di una tipica giornata caratterizzata da cielo coperto. Ad esempio, oggi 15 marzo 2015, data in cui sto ultimando questo post, la radiazione solare globale osservata presso UniTo (i dati sono consultabili in questa pagina) è rimasta fino ad ora quasi sempre inferiore ai 100 W/m², a parte un breve periodo intorno a mezzogiorno; tali condizioni sono peraltro comuni a buona parte dell’Italia settentrionale ed aree limitrofe.

Esempio di ciclone extratropicale: il sistema del 18 dicembre 2007 (fonte: pixgood).

Esempio di ciclone extratropicale: il sistema del 18 dicembre 2007 (fonte: pixgood).

I valori appena calcolati mostrano che l’effetto dell’eclissi non è trascurabile, ma risulta paragonabile all’effetto del passaggio di un sistema di nubi esteso per circa un migliaio di km. In effetti, questa animazione relativa all’eclissi dell’agosto 1999 sulla Terra mostra come l’area interessata dal fenomeno sia risultata paragonabile all’area di nuvolosità di un classico ciclone extratropicale (ovvero di una depressione con annessi fronti freddo e caldo, quali quelle che si presentano sulla nostra testa con una frequenza media di una ogni quattro giorni – si veda ad esempio la figura a fianco), solo in moto molto più rapido: abbiamo infatti detto sopra che il cono d’ombra viaggia a circa 1800 km/h, ovvero 500 m/s, da paragonare con i circa 10-50 m/s che costituiscono la tipica velocità di fase di un ciclone extratropicale: così il transito del cono di ombra e penombra impiega circa 2 ore, mentre il transito dell’area nuvolosa collegata ad un ciclone extratropicale impiega circa 1-4 giorni.

Dal momento che l’Unione europea produce circa 90 GW di energia solare e la produzione si potrebbe ridurre temporaneamente fino a 34 GW, se il cielo sarà sereno, secondo quanto si deduce dalle analisi dei gestori (si veda ad esempio questa analisi), ci si attende che l’eclissi solare del 20 marzo 2015 possa avere un impatto significativo sul sistema di potenza elettrica generato con fonti non convenzionali. A questo proposito, giova ricordare che la riduzione potrebbe non riguardare soltanto la produzione di energia solare, ma anche quella eolica (si veda questo documento). Sicuramente la produzione di elettricità da fonti non convenzionali è aumentata in modo rilevante negli ultimi anni. Nonostante queste considerazioni, tuttavia la mia precedente analisi mostra come il fenomeno dell’eclissi non sembra avere effetti così drammaticamente diversi da quelli prodotti dall’arrivo, sulle stesse zone, di un normale ciclone extratropicale delle medie latitudini, se non per la rapidità del passaggio della zona oscurata. Ciò nonostante, visto che, a parte la nuvolosità del momento, le principali caratteristiche astronomiche dell’eclissi sono note da tempo, il settore elettrico sta comunque adottando le misure del caso in modo da mitigare l’impatto dell’eclissi stessa.

La radiazione ultravioletta è la componente più pericolosa in quanto ha energia sufficiente per spezzare i legami chimici, provocando danni a carico dell’occhio come lo pterigio, la pinguecola, la cheratite, la cataratta senile e la degenerazione maculare senile, nonchè una percentuale maggiore dello sviluppo di tumori a carico della cute perioculare. Fonte: dott. Benedetti.

La radiazione ultravioletta è la componente più pericolosa in quanto ha energia sufficiente per spezzare i legami chimici, provocando danni a carico dell’occhio come lo pterigio, la pinguecola, la cheratite, la cataratta senile e la degenerazione maculare senile, nonchè una percentuale maggiore dello sviluppo di tumori a carico della cute perioculare. Fonte: dott. Benedetti.

Per concludere, vorrei ancora sottolineare un aspetto. L’eclissi di Sole è un fenomeno sicuramente intrigante e il fatto che la radiazione proveniente dalla nostra stella sia ridotta potrebbe indurre a pensare che sia molto meno pericoloso osservare il Sole, magari addirittura ad occhio nudo. Ebbene, non fatelo. Se guardare il Sole pieno ad occhio nudo produce un’immediata sensazione di dolore che costringe a chiudere l’occhio e non è particolarmente dannoso, un’esposizione prolungata può produrre lesioni alla retina e danni all’apparato oculare, soprattutto per effetto dei raggi ultravioletti, mentre la componente infrarossa può riscaldare eccessivamente le pareti oculari. In caso di eclissi parziale, il pericolo tuttavia è maggiore, in quanto la pupilla rimane spiazzata dalla vicinanza tra la porzione di disco solare non ombreggiato e la parte in ombra, e tende a dilatarsi, esponendo quindi maggiormente la retina alla radiazione da parte della porzione di Sole non eclissata ed aumentando il rischio di danneggiamento permanente delle cellule della retina, per di più senza sperimentare alcun dolore. È quindi opportuno utilizzare filtri ottici appropriati, del tipo delle lenti da saldatore, in grado di filtrare opportunamente la componente ultravioletta dello spettro; mentre l’efficacia di dispositivi improvvisato, come ad esempio i vecchi rullini fotografici vergini, rischia di essere minima o nulla, e pertanto è sconsigliata. Allo stesso modo, osservare il Sole con un binocolo senza filtri equivale a concentrare sulla retina la radiazione, ed è operazione dannosissima. Ricordiamoci che un’eclissi dura due ore, ma un eventuale danno all’apparato oculare potrebbe produrre danni permanenti che ci porteremo dietro quindi per tutta la vita. La cautela è d’obbligo!

Please leave a comment

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...